
Python: module cdms.fvariable

cdms.fvariable index
CDMS File−based variables.

Modules
MA PropertiedClasses cdms.internattr types

Classes

cdms.variable.DatasetVariable(cdms.avariable.AbstractVariable)
FileVariable

class FileVariable(cdms.variable.DatasetVariable)

A variable in a single file.

Method resolution order:
FileVariable
cdms.variable.DatasetVariable
cdms.avariable.AbstractVariable
cdms.cdmsobj.CdmsObj
cdms.internattr.InternalAttributesClass
PropertiedClasses.Properties.PropertiedClass
cdms.slabinterface.Slab

Methods defined here:

__init__(self, parent, varname, cdunifobj=None)

__len__(self)
Length of first dimension.

__repr__(self)

__setitem__(self, index, value)

__setslice__(self, low, high, value)

assignValue(self, data)

1/10

expertSlice(self, initslicelist)

getValue(self, squeeze=1)
Return the entire set of values.

initDomain(self, axisdict)
Called by whoever made me.

typecode(self)

Methods inherited from cdms.variable.DatasetVariable:

__getitem__(self, key)

__getslice__(self, low, high)

expertPaths(self, slist)
expertPaths(self, slicelist)
takes a list of slices,
returns a 3−tuple: (npart, dimensionlist, partitionSlices) where:
npart is the number of partitioned dimensions: 0, 1, or 2;
dimensionlist is a tuple of length npart, having the dimension
 numbers of the partitioned dimensions;
partitionSlices is the list of file−specific (filename, slice)
 corresponding to the paths and slices within the files to be read.
 The exact form of partitionSlices depends on the value of npart:
 npart partitionSlices
 0 (filename,slicelist)
 1 [(filename,slicelist),...,(filename,slicelist)]
 2 [[(filename,slicelist),...,(filename,slicelist)]
 [(filename,slicelist),...,(filename,slicelist)]
 ...
 [(filename,slicelist),...,(filename,slicelist)]]

Note:
 − A filename of None indicates that no file was found with data
corresponding to the slicelist.
 − If partitionSlices is None, the slicelist does not intersect the domain.
 − An empty partitionSlices [] means that the variable is zero−dimensional.

genMatch(self, axis, interval, matchnames)
Helper function for expertPaths.
axis is a partitioned axis, either time or vertical level.
interval is an index interval (istart, iend).
matchnames is a partially filled list [id, timestart, timeend, levstart, levend]
 If a filemap is used, matchnames has indices, otherwise has coordinates.

Function modifies matchnames based on axis and interval,
returns the modified matchnames tuple.

getAxis(self, n)

2/10

getDomain(self)

getFilePath(self, matchnames, template)
Lookup or generate the file path, depending on whether a filemap
or template is present.

getPaths(self, *specs, **keys)
Get the paths associated with the interval region specified
by 'intervals'. This incorporates most of the logic of __getitem__,
without actually reading the data.

'specs' is a list of interval range specifications as defined
for getSlice.
#
The function returns a list of tuples of the form (path,slicelist),
where path is the path of a file, and slicetuple is a tuple of
slices, of the same length as the rank of the variable, representing the
region of the variable which is contained in the file. The following
would retrieve the data for that file:
#
f = Cdunif.CdunifFile(path,'r')
var = f.variables[self.name_in_file]
data = apply(var.getitem,slicelist)

getShape(self)

getTemplate(self)
Get the template

size(self)
Number of elements.

Methods inherited from cdms.avariable.AbstractVariable:

__abs__(self)

__add__(self, other)

__array__(self, t=None)

__call__(self, *args, **kwargs)
Selection of a subregion using selectors

__div__(self, other)

__eq__(self, other)

__ge__(self, other)

__gt__(self, other)

__iadd__(self, other)

3/10

Add other to self in place.

__idiv__(self, other)
Divide self by other in place.

__imul__(self, other)
Multiply self by other in place.

__isub__(self, other)
Subtract other from self in place.

__le__(self, other)

__lshift__(self, n)

__lt__(self, other)

__mul__(self, other)

__ne__(self, other)

__neg__(self)

__pow__(self, other, third=None)

__radd__ = __add__(self, other)

__rdiv__(self, other)

__rmul__ = __mul__(self, other)

__rshift__(self, n)

__rsub__(self, other)

__sqrt__(self)

__sub__(self, other)

astype(self, tc)
return self as array of given type.

crossSectionRegrid(self, newLevel, newLatitude, missing=None, order=None, method='log')
Return the variable regridded to new pressure levels and latitudes.
The variable should be a function of lat, level, and (optionally) time.
<newLevel> is an axis of the result pressure levels.
<newLatitude> is an axis of latitude values.
<method> is optional, either "log" to interpolate in the log of pressure (default),
 or "linear" for linear interpolation.
<missing> and <order> are as for regrid.CrossSectionRegridder.

decode(self, ar)

4/10

Decode compressed data. ar is a masked array, scalar, or MA.masked

generateGridkey(self, convention, vardict)
generateGridkey(): Determine if the variable is gridded,
and generate ((latname, lonname, order, maskname, class), lat, lon) if gridded,
or (None, None, None) if not gridded. vardict is the variable dictionary of the parent

generateRectGridkey(self, lat, lon)
generateRectGridkey(): Determine if the variable is gridded, rectilinear,
and generate (latname, lonname, order, maskname, class) if gridded,
or None if not gridded

getAxisIds(self)
Get a list of axis identifiers

getAxisIndex(self, axis_spec)
Return the index of the axis specificed by axis_spec.
Argument axis_spec and be as for axisMatches
Return −1 if no match.

getAxisList(self, axes=None, omit=None, order=None)
Get the list of axis objects;
If axes is not None, include only certain axes.
If omit is not None, omit those specified by omit.
Arguments omit or axes may be as specified in axisMatchAxis
order is an optional string determining the output order

getAxisListIndex(self, axes=None, omit=None, order=None)
Return a list of indices of axis objects;
If axes is not None, include only certain axes.
less the ones specified in omit. If axes is None,
use all axes of this variable.
Other specificiations are as for axisMatchIndex.

getConvention(self)
Get the metadata convention associated with this object.

getGrid(self)
Return the grid

getGridIndices(self)
Return a tuple of indices corresponding to the variable grid.

getLatitude(self)
Get the first latitude dimension, or None if not found.

getLevel(self)
Get the first vertical level dimension in the domain,
or None if not found.

getLongitude(self)
Get the first latitude dimension, or None if not found.

5/10

getMissing(self, asarray=0)
Return the missing value as a scalar, or as
a Numeric array if asarray==1

getOrder(self, ids=0)
getOrder(ids=0) returns the order string, such as tzyx.

if ids == 0 (the default) for an axis that is not t,z,x,y
the order string will contain a '−' in that location.
The result string will be of the same length as the number
of axes. This makes it easy to loop over the dimensions.

if ids == 1 those axes will be represented in the order
string as (id) where id is that axis' id. The result will
be suitable for passing to order2index to get the
corresponding axes, and to orderparse for dividing up into
components.

getRegion(self, *specs, **keys)
getRegion
Read a region of data. A region is an n−dimensional
rectangular region specified in coordinate space.
'slices' is an argument list, each item of which has one of the following forms:
− x, where x is a scalar
 Map the scalar to the index of the closest coordinate value
− (x,y)
 Map the half−open coordinate interval [x,y) to index interval
− (x,y,'cc')
 Map the closed interval [x,y] to index interval. Other options are 'oo' (open),
 'oc' (open on the left), and 'co' (open on the right, the default).
− (x,y,'co',cycle)
 Map the coordinate interval with wraparound. If no cycle is specified, wraparound
 will occur iff axis.isCircular() is true.
 NOTE: Only one dimension may be wrapped.
− Ellipsis
 Represents the full range of all dimensions bracketed by non−Ellipsis items.
− ':' or None
 Represents the full range of one dimension.

For example, suppose the variable domain is (time,level,lat,lon). Then

 getRegion((10,20),850,Ellipsis,(−180,180))

retrieves:
 − all times t such that 10.<=t<20.
 − level 850
 − all values of all dimensions between level and lon (namely, lat)
 − longitudes x such that −180<=x<180. This will be wrapped unless
 lon.topology=='linear'

getSlice(self, *specs, **keys)

6/10

x.getSlice takes arguments of the following forms and produces
a return array. The keyword argument squeeze determines whether
or not the shape of the returned array contains dimensions whose
length is 1; by default this argument is 1, and such dimensions
are 'squeezed out'.
There can be zero or more positional arguments, each of the form:
(a) a single integer n, meaning slice(n, n+1)
(b) an instance of the slice class
(c) a tuple, which will be used as arguments to create a slice
(d) None or ':', which means a slice covering that entire dimension
(e) Ellipsis (...), which means to fill the slice list with ':'
 leaving only enough room at the end for the remaining
 positional arguments
There can be keyword arguments of the form key = value, where
key can be one of the names 'time', 'level', 'latitude', or
'longitude'. The corresponding value can be any of (a)−(d) above.

There must be no conflict between the positional arguments and
the keywords.

In (a)−(c) negative numbers are treated as offsets from the end
of that dimension, as in normal Python indexing.

getTime(self)
Get the first time dimension, or None if not found

isAbstractCoordinate(self)

isEncoded(self)
True iff self is represented as packed data.

pressureRegrid(self, newLevel, missing=None, order=None, method='log')
Return the variable regridded to new pressure levels.
The variable should be a function of lat, lon, pressure, and (optionally) time.
<newLevel> is an axis of the result pressure levels.
<method> is optional, either "log" to interpolate in the log of pressure (default),
 or "linear" for linear interpolation.
<missing> and <order> are as for regrid.PressureRegridder.

rank(self)

reg_specs2slices(self, initspeclist, force=None)

regrid(self, togrid, missing=None, order=None, mask=None)
return self regridded to the new grid. Keyword arguments
are as for regrid.Regridder.

reorder(self, order)
return self reordered per the specification order

select = __call__(self, *args, **kwargs)
Selection of a subregion using selectors

7/10

setGrid(self, grid)
Set the variable grid

setMissing(self, value)
Set the missing value, which may be a scalar,
a single−valued Numeric array, or None. The value is
cast to the same type as the variable.

specs2slices(self, speclist, force=None)
Create an equivalent list of slices from an index specification
An index specification is a list of acceptable items, which are
−− an integer
−− a slice instance (slice(start, stop, stride))
−− the object "unspecified"
−− the object None
−− a colon
The size of the speclist must be rank()

subRegion(self, *specs, **keys)

subSlice(self, *specs, **keys)

Methods inherited from cdms.cdmsobj.CdmsObj:

dump(self, path=None, format=1)
dump(self,path=None,format=1)
Dump an XML representation of this object to a file.
'path' is the result file name, None for standard output.
'format'==1 iff the file is formatted with newlines for readability

matchPattern(self, pattern, attribute, tag)
Match a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

matchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which matches the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not a string

searchPattern(self, pattern, attribute, tag)
Search for a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

searchPredicate(self, predicate, tag)
Apply a truth−valued predicate. Return a list containing a single instance: [self]
if the predicate is true and either tag is None or matches the object node tag.
If the predicate returns false, return an empty list

searchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which contains the compiled regular expression pattern, or

8/10

if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not
a string.

Methods inherited from cdms.internattr.InternalAttributesClass:

is_internal_attribute(self, name)
is_internal_attribute(name) is true if name is internal.

replace_external_attributes(self, newAttributes)
replace_external_attributes(newAttributes)
Replace the external attributes with dictionary newAttributes.

Methods inherited from PropertiedClasses.Properties.PropertiedClass:

__delattr__(self, name)

__getattr__(self, name)

__setattr__(self, name, value)

get_property_d(self, name)
Return the 'del' property handler for name that self uses.
Returns None if no handler.

get_property_g(self, name)
Return the 'get' property handler for name that self uses.
Returns None if no handler.

get_property_s(self, name)
Return the 'set' property handler for name that self uses.
Returns None if no handler.

set_property(self, name, actg=None, acts=None, actd=None, nowrite=None, nodelete=None)
Set attribute handlers for name to methods actg, acts, actd
None means no change for that action.
nowrite = 1 prevents setting this attribute.
 nowrite defaults to 0.
nodelete = 1 prevents deleting this attribute.
 nodelete defaults to 1 unless actd given.
if nowrite and nodelete is None: nodelete = 1

Methods inherited from cdms.slabinterface.Slab:

createattribute(self, name, value)
Create an attribute and set its name to value.

deleteattribute(self, name)
Delete the named attribute.

getattribute(self, name)

9/10

Get the attribute name.

getdimattribute(self, dim, field)
Get the attribute named field from the dim'th dimension.
For bounds returns the old cu one−dimensional version.

info(self, flag=None, device=None)
Write info about slab; include dimension values and weights if flag

listall(self, all=None)
Get list of info about this slab.

listattributes(self)
Return a list of attribute names.

listdimattributes(self, dim)
List the legal axis field names.

listdimnames(self)
Return a list of the names of the dimensions.

setattribute(self, name, value)
Set the attribute name to value.

showdim(self)
Show the dimension attributes and values.

Data and other attributes inherited from cdms.slabinterface.Slab:

std_slab_atts = ['filename', 'missing_value', 'comments', 'grid_name', 'grid_type', 'time_statistic', 'long_name', 'units']

Data
CdunifError = 'CdunifError'
FileClosed = 'Cannot read from closed file, variable: '
FileClosedWrite = 'Cannot write to a closed file, variable: '

10/10

	PCMDI Software Portal - Python: module cdms.fvariable

